
www.manaraa.com

Retrospective Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

1968

Structure and organization of a pattern processor
for handprinted character recognition
Roy James Zingg
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/rtd

Part of the Electrical and Electronics Commons

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University
Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University
Digital Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Zingg, Roy James, "Structure and organization of a pattern processor for handprinted character recognition " (1968). Retrospective
Theses and Dissertations. 3528.
https://lib.dr.iastate.edu/rtd/3528

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F3528&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F3528&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F3528&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F3528&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F3528&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F3528&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/270?utm_source=lib.dr.iastate.edu%2Frtd%2F3528&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd/3528?utm_source=lib.dr.iastate.edu%2Frtd%2F3528&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

www.manaraa.com

This dissertation has been

microfihned exactly as received 69-4295

ZINGG, Roy James, 1931-
STRUCTURE AND ORGANIZATION OF A PATTERN
PROCESSOR FOR HANDPRINTED CHARACTER
RECOGNITION.

Iowa State University, Ph.D., 1968
Engineering, electrical

University Microfilms, Inc., Ann Arbor, Michigan

www.manaraa.com

STRUCTURE AND ORGANIZATION OF A PATTERN

PROCESSOR FOR HANDPRINTED CHARACTER RECOGNITION

by

Roy James Zingg

A Dissertation Submitted to the

Graduate Faculty in Partial Fulfillment of

The Requirements for the Degree of

DOCTOR OF PHILOSOPHY

Major Subject: Electrical Engineering

Approved:

In Charge of Major Work

Head of Major Department

G?a(n of Graduate College

Iowa State University

Ames, Iowa

1968

Signature was redacted for privacy.

Signature was redacted for privacy.

Signature was redacted for privacy.

www.manaraa.com

ii

TABLE OF CONTENTS

Page

INTRODUCTION 1

Scope of Investigation 3

REVIEW OF OPTICAL CHARACTER RECOGNITION 4

Some Approaches to Optical Character Recognition 4

Adaptive Pattern Classifiers 6

On-Line Character Recognition 6

Commercial Optical Character Recognition Systems 6

SYSTEM RATIONALE 8

Objectives 8

Factors Affecting System Organization 9

SYSTEM STRUCTURE 15

Control 15

Data Flow and Storage 18

Processing 22

Input/Output 2 7

PROCESSING TECHNIQUES 28

Addressing Techniques 28

Bus Control Techniques 31

Logical Manipulation of Data 33

Arithmetic 38

CONCLUSIONS 40

LITERATURE CITED 45

ACKNOWLEDGMENTS 48

www.manaraa.com

iii

Page

APPENDIX A. SYSTEM COMMAND SET 49

Branching Commands 50

Test and Set Commands 56

Scratchpad Memory Commands 59

Data Movement Commands 65

Data Bus Setup and Transfer Commands 67

Clear and Set Commands 69

Shift and Count Commands 70

APPENDIX B. SAMPLE PROGRAMS 73

Sum all Ones in a Specified Rectangular Area 73

Line Thinning and Stray Bit Deletion 77

Multiple Byte Addition 81

Single Byte Multiplication 85

www.manaraa.com

1

INTRODUCTION

A computing system is in reality an information processor. Input

information is presented to the system, transformed according to certain

specified or partially specified rules and finally emerges as output

information. The total information processing system includes not only

the computer and its input/output devices, but also the people and

machinery required to convert the input information into a form acceptable

to the input devices. The central design goal in designing an information

processing system should be to minimize the total cost of processing

information. For a typical computing center these costs would include

problem formulation and programming costs by the problem orginator and

any professional programming help, machine rental or purchase costs and

center operating expenses.

During the past fifteen years the most dramatic change in the cost

picture in ths-computer industry has been the decrease in electronic

cost on a per logical decision element basis. The actual electronic

cost per logical decision element has gone from about two dollars to

about twenty cents during this period. Projected cost for the early

1970's is a few cents per logical element (1), This cost decrease

has been accompanied by increases of several orders of magnitude in

both speed and reliability.

In contrast to this optimistic trend, other costs, particularly

people cost, have increased during this same time period. An analysis

of the cost picture of a computing center with a rather wide problem mix

shows that if the cost of the logic and control circuitry in the computing

www.manaraa.com

2

system were reduced to zero, the decrease in total information processing

cost would be less than two percent (2).

If the total cost of processing information is to be minimized,

perhaps one method of attack is to try to apply these inexpensive

logical circuits to devices and systems which tend to minimize the people

cost. Considerable work has been done in several areas pursuant to this

goal. Efforts have been made in the area of directly implementing high-

level languages in hardware (3, 4). The potential gain here is to

replace a large part of systems 'programming packages with hardware.

Hopefully, the total information processing cost would be decreased.

Considerable time, money and effort have recently been expended on

multiprogramming and time-sharing systems (5, 6, 7). The pertinence of

such systems in this discussion is that they will, at least potentially,

help reduce the total cost of information processing by providing increased

machine aid in the problem formulation and debugging phases of information

processing. This is especially true in highly interactive systems

(8, 9, 10).

A sizeable fraction of information processing cost in some

computing environments is the cost of converting programs and data to a

machine readable form. For example, on a typical university campus

thousands of student originated programs are run per month. The cost

of providing key punches and key punch operators for these one-time

programs is substantial, A handprinted document processor in such an

environment would be of considerable value.

www.manaraa.com

3

Scope of Investigation

Three areas have been mentioned in which the work being done may

tend to minimize information processing cost. Even with relatively low

logic cost the first two research areas require substantial commitments

of funds if processing hardware is to actually be built. The third

area, that is a handprinted character recognition system, shows promise

of being tractable in a research environment where funding is limited,

but hardware as an ultimate goal is still required.

Since the problem of the recognition.of handprinted characters is

not solved it would be naive to undertake the design of hardware to

implement some specific recognition algorithm. However, it might be

feasible to build a special purpose system intended to be used as a

tool for investigating various recognition algorithms. To be effective

this system should include a document reader to digitize input informa­

tion, a special purpose computer for the recognition function and

auxiliary input/output equipment. Such a system is being conceived,

designed and built as a research project, and is to be used for the

purpose indicated.

This investigation is part of this research project. Its scope is

to investigate possible system organizations and to arrive at a system

organization for the special purpose computer in the experimental hand­

printed character recognition system. The resulting computer is to

provided a flexible tool for the investigation of various handprinted

character recognition algorithms, and at the same time be a near minimum

cost machine.

www.manaraa.com

4

REVIEW OF OPTICAL CHARACTER RECOGNITION

Optical character recognition is generally considered to be part of

the more general pattern recognition problem. In the general pattern

recognition problem a new pattern may or may not belong to one of the

pattern classes to be recognized. However, in optical character recog­

nition it can usually be assumed that the character being processed is

some member of the allowed character set. Consequently, the problem of

optical character recognition essentially consists of two steps. First,

significant features of the character being processed are extracted and

then these features are used in a decision procedure to determine to

which class the character belongs. Of course, the non-trivial job of

scanning the character and converting the visual information to some

electrical form must also be done. Over the years there have been a

variety of approaches to these basic steps of optical character recog­

nition (11 - 29).

Soma Approaches to Optical Character Recognition

The decision as to what approach to take in this problem area has

usually been influenced by the specific job to be done. When the text

to be recognized consists of a single machine written type font,

template matching has been used successfully. When characters from

several type fonts or handprinted characters are to be read investigators

have tended toward extracting properties of the cnaracter which tend

to be invariant for the expected variations in the character styles

under consideration (12).

www.manaraa.com

5

Sets of properties extracted has varied widely. Holt (13) suggests

a curve tracing technique to extract features. Liu and Shelton (14)

apply a series of spatially arranged groups of points called N-tuples to

the character to obtain pertinent feature information. Bomba (15)

extracted information about line direction and intersection orientation.

This might be called local feature extraction. Doyle (16) also extracts

local features, but the tests are quite different than those of Bomba.

Unger (17) looks for various types of cavities and holes. Again these

might be called local features. Alt (18) suggests the use of moments

for feature extraction. The primary advantage of this method is that

these properties are less sensitive to rotation, noise and slight

variations in style than some features. Finally, Bledsoe and Browning

(19) consider randomly-generated operators to obtain relatively invariant

features of alphanumeric character patterns.

After the features have been extracted a decision procedure must

be executed to classify the character being processed into one of a

preassigned number of classes. The complexity of this task depends on

the quality of the features previously extracted, the variations

permitted in the characters and the number of preassigned classes.

Consequently, investigators have used a variety of procedures to classify

characters. Decision trees have been used (15, 17). In at least one

case, a decision is made after each test in an attempt to minimize the

number of tests required (20). Others suggest linear or piecewise

linear decision functions (21, 22, 23). Liu and Shelton (14) base the

decision procedure on a minimum distance linear classification scheme.

www.manaraa.com

6

Adaptive Pattern Classifiers

Some of the classification schemes already mentioned are also

adaptive (16, 21). That is, the decision criteria are adjusted based

on experience with some of the characters to be recognized during a

learning phase. Others also propose adaptive pattern classifiers

(24, 25).

On-Line Character Recognition

Another variation of optical character recognition schemes for

handprinted characters is on-line recognition (26, 2 7, 28, 29). This

technique has seemingly gained favor as graphical input devices have

become available for multiprogramming or time-sharing systems. On-line

recognition has several advantages over static recognition systems.

Sequence information of positions traced is available, and the strokes of

the writing stylus, as signalled by the removal of the stylus from the

writing plane, provide additional information. This additional infor­

mation makes only crude measurement of stylus position necessary; whereas

in static recognition inconsistancies in stylus position usually make

necessary the measurement of secondary properties. This implies

dividing the character plane into a relatively large number of regions.

Further, if the recognized characters are displayed on a graphic output

device any recognition errors can be corrected immediately by the user.

Commercial Optical Character Recognition Systems

There are a number of commercially available optical character

recognition systems. The characteristics of these systems are summarized

in several publications (30, 31, 32). Some of these systems will read

www.manaraa.com

7

any of several type fonts while others will handle only a particular

font. None of them will currently read a fairly complete alphabet of

handprinted alphanumeric characters. One company has announced, but not

delivered,' a module to be added to an already expensive, existing

system that will read a forty character alphabet of handprinted

characters.

www.manaraa.com

8

SYSTEM RATIONALE

Most of the processing done in investigations on handprinted

character recognition has been done on general purpjose computers. Even

where special hardware has been proposed it has often been simulated to

a large extent rather than actually built. This lack of hardware has

influenced some investigations. In some cases the approach taken was

determined by the type of computing general purpose computers do

reasonably well. In other cases the difficulties in digitizing input

data without special readers or scanners forced the investigator to test

only small data samples. Special purpose equipment should facilitate

investigations in this area providing it has appropriate characteristics

and achieves certain objectives.

Objectives

The primary objective set for the handprinted character re.cognition

system proposed here is that it serve as a research tool for experimental

recognition algorithms. Consequently, it must be possible to implement

a variety of algorithms, including adaptive recognition algorithms, and

execute even complex algorithms at the designed-for character rate-

Assuming an acceptable recognition algorithm, the system must have the

capacity to process a reasonably large character set.

Another objective is to accomplish the primary objective at a

reasonable cost. Consequently, the designed for character rate was s^t

at 100 characters per second with processing to be done in real time.

Actually the character rate is not critical for an experimental system.

www.manaraa.com

9

This rate was chosen because it is an order of magnitude greater than,

keypunching, but still low enough to keep processing speed requirements

reasonable.

Finally, an additional objective was set to help keep the system

practical from a use point of view. The documents to be sensed are to

be handprinted characters on a modified coding sheet. No special pencils

or other special equipment is to be required. This last objective bears

more on the design of an acceptable algorithm and on the design of a

document reader than on this specific investigation. However, it is

stated to clarify the intent of the overall program.

Factors Affecting System Organization

There are two factors that have had major influence on the organiza­

tion of this system with a third modifying factor that has exerted

influence in many of the choices made. The first is the choice of

packaging technique, and the second is the type and environment of

the expected usage. The modifying factor has been the desire to keep

the cost of the system down.

Implications of packaging technique

Early in the development of this system the decision was made to

implement it by using large two-sided printed circuit boards that plug

into another two-sided printed circuit board. This interconnect board

permits 162 parallel runs. All system interconnections are to be made

with these 162 lines, with the possibility of breaking runs between

boards to gain a limited number of additional interconnections. This

scheme was developed by the Digital Research Group of Fairchild

www.manaraa.com

10

Semiconductor (2). Their cooperation and the elegant simplicity of the

technique made it a very economical choice for this system. This

packaging decision was important since it implicitly forces other system

decisions.

Interconnections With a limited number of interconnections a

bus oriented system becomes attractive. That way many potential

connections for the movement of data can be established with relatively

few, regular interconnections. Also, the distribution of control

information in encoded form is favored. This means that the control

information must be decoded locally wherever needed. Local decoding

increases the amount of logic required. However, the basic packaging

technique is good from the point of view of minimizing the number of

connector coi.^acts and the number of point to point interconnections.

Consequently, the net cost of local decoding is substantially less than

the cost of the additional logic required.

An acceptable way to provide timing information throughout the

system compatible with the packaging technique is to time each section

of the system independently. The several sections of the system are

then permitted to interact asynchronously with appropriate initiation

and completion signals generated. When a basically synchronous device

such as the document reader requires attention it is to be handled on

an interrupt bas is.

System partitioning The way a system is partitioned is extremely

sensitive to the amount of logical capability that is available per

board- Epoxy RTL integrated circuits were chosen as the basic logical

building blocks in this system for primarily economic reasons. One

www.manaraa.com

11

package of this family of integrated circuits contains either a flip

flop, a pair of two-input NOR gates or a buffer. The two-sided printed

circuit boards used in the chosen packaging scheme are approximately

12 inches by 14 inches. There are 484 positions for RTL integrated

circuit packages with 300 packages per board being a reasonable

practical limit. To give an indication of the amount of functional

capability that this many integrated circuits corresponds to, an eight

bit, ripple carry, binary adder can be implemented with 56 integrated

circuits.

This amount of functional capability in itself would permit a

variety of system partitions. However, the way in which a system is

partitioned affects the number of interconnections, and also the amount of

control logic in a system with local decoding. Fortunately for this

system the partitioning corresponding to the minimum number of inter­

connections was also a satisfactory one for the amount of control logic

required. Generally in this system the best partitioning corresponds

to putting an entire register on a board rather than putting parts of

several registers on a board.

Expansion capability In an experimental system such as this it

is highly desirable to be able to expand or perhaps modify the system.

The simple bus-oriented interconnection pattern with local decoding and

functional partitioning are ideally suited to both expansion and modifi­

cation. Additional commands can be decoded and any additional logic or

temporary storage they imply can be added on additional boards and

simply plugged into spare slots. Modifications in the existing structure

www.manaraa.com

12

can usually be accomplished by replacing a board with a new board.

Doing the modification in this way allows the system to be restored by

replacing the new board with the old one. Naturally the extent of

additions must be tempered by the number of spare slots available, power

supply capacity and bus fan-in and fan-out capability,

Implications of usage

The intended use of the system proposed here is as a research

system, that is, a tool for investigations of experimental recognition

algorithms. Both the research environment and the specialized processing

have influenced the organization of the system.

Experimental function Eventually a satisfactory recognition

algorithm might be hard wired in a handprinted character recognition

processor. Some of the processing might be done in an analog sense

rather than digitally. However, the intent for this system is to

provide the capability to experiment with various character sets and

various recognition algorithms. Consequently, a NDRO (non-destructive

read out) control memory was chosen as the means of implementing the

experimental algorithms. The thin film control memory is electrically

alterable with a capacity of 2048 20-bit words and a cycle time of

250 nanoseconds. The question of adequate capacity of this memory will

be discussed later in this document after several programs are discussed.

The algorithms will consist of a series of subroutines stored in the

control memory. The commands making up the subroutines will be the

machine language commands of the system.

Certainly an alterable memory is also necessary. Such things as

www.manaraa.com

13

the character array being processed, the character being read, parameter

information on the character set, and a macro program that selects an

appropriate set of control memory subroutines must bp. stored and be

modifiable. A 256 word, 64 bits per word, DRO (destructive read out),

thin film memory with a cycle time of 250 nanoseconds was chosen for a

scratchpad memory. It will take about 25 words for the two character

arrays that must be preserved and 64 words (or more) for character set

parameter information. Additional storage will be required for macro

program and temporary storage for various purposes. The 256 words of

scratchpad memory is quite feasible from an engineering and economic

point of view, and appears to be adequate from the system point of view.

However, since predicting required scratchpad memory capacity is difficult

the addressing capability to permit doubling the scratchpad capacity is

provided.

Specialized processing Many of the operations to be performed on

the character arrays and on the feature information can be reduced to

such operations as counting, thresholding and comparison. As a

consequence the system organization especially favors such logical

operations. An attempt was made to provide general logical capability

without excessive cost while maintaining a reasonable processing speed.

On the basis of other investigations reported in the literature and

on the basis of economic feasibility, it was assumed that the character

being processed would be represented by an array 32 bits high and 24 bits

wide. The document reader to be associated with this system is predicated

on this decision, and certain system decisions were also based on this

particular grid resolution. However, in the development of the system

www.manaraa.com

14

organization particular care was taken not to preclude other array

sizes. Finer resolution would imply longer processing time and

coarser resolution would imply shorter processing time.

The main system decision that was partially based on the assumed

array size was the degree of parallel processing implemented. The

particular choice was based on several other factors as well. Some of

the additional factors are effect on interconnections required, effect

on system cost and effect on processing speed. The decision was made to

provide enough parallelism to process eight bits of the array at a time.

www.manaraa.com

15

SYSTEM STRUCTURE

In the previous section system objectives were stated and reasons

were presented for making certain system decisions. Here, the structure

of the resulting system will be discussed, and justifications for

particular decisions given.

Control

The control memory is the center of the portion of the system that

provides the control function. The various steps in a recognition

algorithm will be written in machine language subroutines and stored in

the control memory. A few housekeeping subroutines, such as one to

process input interrupts, will also be stored in the control memory.

Commands will be executed from the control memory in sequence unless a

branch conmand or an input/output interrupt causes the sequence to be

broken.

As indicated in Figure 1, control information flows from the control

memory to other portions of the system via the control bus. When a

command is read out of the control memory it is placed, still in encoded

form, on the control bus. When the contents of the control bus is valid

(i.e. when the memory cycle has been completed) a signal indicating this

comes up, the command is decoded somewhere in the system and executed.

When the execution is complete it is indicated by a completion signal.

This completion signal in essence initiates the next control memory cycle.

The command set includes a substantial number of essentially control

commands. A rather wide variety of conditional branch commands has been

implemented to facilitate making tests on the results of processed data.

www.manaraa.com

Figure 1, System block diagram

www.manaraa.com

CONTROL MEMORY SM BDS

SCRATCHPAD
MEMORY

PROCESSING
SECTION

CONTROL BUS

INPUT/OUTPUT

www.manaraa.com

18

Alternatively, the results of tests can be stored in a register as the

tests are made, and then the entire register contents tested against some

specified bit pattern and one of two alternate courses of action taken.

These commands are described in detail in Appendix A.

The timing of the system is slaved to the timing constraints

imposed by the control memory. Obviously, the execution of a command

cannot begin until it is available on the control bus. Command execu­

tion times are variable, with the only requirement being that no comple­

tion signal be generated until enough time has elapsed to allow another

control memory cycle to be initiated. When an input/output interrupt

occurs it is treated like a subroutine jump to a fixed control memory

location, with the return address planted in a push-down list maintained

in the scratchpad memory.

Data Flow and Storage

Figure 1 also shows an SM (scratchpad memory) bus linking the

various parts of the system. This bus provides a mechanism for moving

data and addressing information throughout the system. Raw input data

will be moved from the document reader to the scratchpad memory via the

SM bus. From there it will be moved to the processing section on the SM

bus, processed and then returned via the SM bus.

Address information will also be moved via the SM bus. Figure 2

shows the memory address registers associated with the scratchpad

memory in more detail. Often in the type of processing anticipated

several streams of information will be flowing to or from the scratchpad

memory. For example, perhaps at some point in time character array

www.manaraa.com

Figure 2. Scratchpad memory section

www.manaraa.com

MEMORY OUTPUT REGISTER AND
GATING SM BUS

TO PROCESSING
SECTION THIN FILM

SCPATCHPAD
MEMORY

SD REGISTER

D REGISTER 1

MEMORY ADDRESS
RBOISTER 2 D REGISTER 2

MEMORY AUIRBSS
HGISTBR 3

D REGISTER 3

MEMORY ADDRESS

REGISTER 4
D REGISTER 4

D REGISTER 5

LOCAL MEMORY ADDRESS BUS

\

www.manaraa.com

information will be being processed eight bits at a time from an

unprocessed array, and as it is processed be returned to a processed

array in the scratchpad memory. At the same time, on an interrupt

basis, a new character array will be coming into the scratchpad memory.

Also, processing parameters that are stored in the scratchpad memory

may be required for the appropriate processing of the character array.

For this example four scratchpad memory locations will be of interest.

It is assumed that the four memory address registers implemented will be

used to hold these four addresses.

Scratchpad memory read and write commands issued from the control

memory will normally specify one of the four memory address registers

as the place to find the appropriate scratchpad memory address. The

contents of the selected memory address register will be gated to the

local memory address bus. The bit pattern on this bus is continuously

decoded as the addressed word in the scratchpad memory. In the event

the desired scratchpad memory address is not contained in one of the

memory address registers several special scratchpad memory read and

write commands have been implemented to retrieve the appropriate

address from either the scratchpad memory, the control memory or a

register in the processing section.

A fifth register called the push-down register can also be connected

to the local memory address bus. This register, and the logic associated

with it maintains a push-down list, eight addresses deep near the high

address end of the scratchpad memory. This push-down list is used for

subroutine linkage and linkage for input/output interrupts.

Figure 2 also shows five D registers associated with the scratchpad

www.manaraa.com

22

memory. These registers are used primarily for indexing functions-

Commands are implemented to decrement and test the contents of any of

these registers.

The last register shown in Figure 2, the SD register, is primarily

intended to permit decrementing the memory address registers. A command

is implemented to gate the contents of one of the MAR*s to the SD

register, decrement it by zero, one, two or eight and return the modified

contents to a specified MAR. This register can also be used as a general

purpose register since it can communicate with other registers via the SM

bus.

The contents of all of the registers discussed as well as the

scratchpad memory output register can be placed on the SM bus. Also,

the contents of the SM bus can be loaded into any of these registers.

The details of which lines of the SM bus are involved depends on the

particular command being executed, and can be found in Appendix A.

Processing

Figure 3 shows a relatively detailed block diagram of the processing

hardware. Data communication to and from the scratchpad memory is via

the SM bus. Within the processing section data flow is primarily via

three data buses. The possible paths for data flow are indicated on the

block diagram of Figure 3. Generally, when the contents of a register

is placed on a data bus the connection is maintained until a subsequent

command breaks the connection. If the contents of two or more registers

are placed on a particular data bus, the bus will contain the bit by bit

logical OR of the registers involved. The contents of all three data

www.manaraa.com

\

\

\

Figure 3. Processing section

www.manaraa.com

R RBGÏSTER M REGISTER L REGISTER

SM
BDS

DATA BUS 1

\/ DATA BUS 3

FLAG
REGISTER

ADDER MR BB0Ï8TBR

TO SCRATCHPAD

GODKT MASK

RB6XSTBR

. _ L

— i— - ' —j- -

7 r t-f-

N?

www.manaraa.com

25

buses can be gated to registers in the processing section with a single

command. Also the contents of one data bus may be gated to several

registers.

Processing a character array will typically be done eight bits at a

time, and frequently the processing of a bit involves the bit and its

eight nearest neighbors. The L, M and R registers are each ten bits in

length, and are intended to provide local storage for eight bits and

nearest neighbor information. Thus if the center eight bits of the M

register are the eight contiguous bits being processed, all of the

nearest neighbors of these bits can be held in these three registers,

The L, M and R registers communicate with a series of counters via

some rather simple count logic. Viewed horizontally, the counters

appear as eight independent, five-bit counters. Each of these eight

counters is associated with the corresponding bit position of the center

eight bits of the L, M and R registers. Whether a counter is incremented

by zero, one, two, or three depends on the count command being executed,

the contents of the corresponding bit positions of the L, M and R

registers, and may depend on the contents of the count mask register.

To increase the versatility of the logic any or all of the three

registers; L, M and R, may be shifted one position up or down before the

counting is done and returned to their original states after the counting

is done.

Part of the power of the manner in which bit processing is done here

comes from the variety of ways in which the contents of the counters can

be placed on a data bus, and subsequently gated to other registers. The

contents of any of the eight counters can be placed on any of the data

www.manaraa.com

26

buses. Which of the eight is determined by the contents of the I

register. The I register can be incremented and tested by command.

Viewed vertically, the counters can be thought of as five, eight-bit

registers. The contents of any of these five registers may be placed on

any of the data buses.

The adder is an eight-bit ripple carry binary adder. Each of the

two input operands can be the contents or the one's complement of the

contents of any of the three data buses. Or, for special purposes

an input operand can be made all zeros. The binary sum of the two inputs

is formed continuously and can be placed on any of the data buses. The

carry into the least significant adder stage can be set to be either a

one or a zero. Any additions or subtractions involving operands more

than eight bits long as well as multiplication and division must be

programmed.

The MIR register serves primarily as a link back to the scratch­

pad memory or to other registers served by the SM bus. However, it can

be loaded from or connected to any of the data buses, and thus can serve

as a general purpose register for the processing section as well.

The bits of the flag register can be set as a consequence of

certain of the test commands as mentioned in an earlier section.

Subsequently, a conditional branch can be made on the basis of the contents

of the flag register. This register is shown in this section since

communication to and from it from the data buses is also implemented.

www.manaraa.com

27

Input/Output

The primary input device for this system will be a document reader

that digitizes the character array. When a slice of the character

being read is registered in an input buffer an interrupt flag will be

set. This will cause an interruption in the normal sequential execu­

tion of commands from the control memory. The interrupt is processed

by performing a subroutine jump to location zero of the control manory.

A subroutine to process input/output requests will begin at location

zero.

Output will also be handled on an interrupt basis. When output is

called for an interrupt flag will be set. When the output device called

for is available the output interrupt will be processed in a fashion

similar to the way in which an input interrupt is handled.

Hopefully, the processed output from this system will eventually be

entered directly into a general purpose computer. This would permit

convenient comparisons to determine the accuracy of the particular

recognition algorithm being tested. However, during the initial

operational phase of the system either a typewriter or a paper tape

punch will be used as an output device.

www.manaraa.com

28

PROCESSING TECHNIQUES

A rationale for this system has been presented wherein certain

objectives were stated and certain factors affecting system decisions

were discussed. Subsequently, the system structure was described. Also,

Appendix A contains a detailed description of all of the commands that

have been implemented. Further insight into the reasons for the system

being as it is can be gained by a discussion of certain aspects of the

system as they relate to programs meant to do specific jobs.

Addressing Techniques

The use of a control memory that is not alterable under program

control led to the association of several memory address registers with

the scratchpad memory. These memory address registers are used in a

pseudo indirect addressing scheme. That is, a typical control command

that references the scratchpad memory does not specify an address.

Rather, it specifies the memory address register in which the address

can be found. These memory address registers can be incremented by

zero, one, two or eight as part of the execution of the referencing

command. This scheme is very convenient for moving through a character

array. The possible increments were chosen specifically to facilitate

working through a character array in two directions, as well as for

storing and retrieving one and two byte parameters.

The first two subroutines in Appendix B illustrate typical movement

through character arrays stored as shown in Figure 4. Horizontal movement

across a character implies incrementing by eight (one word), and vertical

motion down a character implies incrementing by one (one byte).

www.manaraa.com

29

WOBD 0
WORD 23

BYTE
BOUNDARIES

WORD 255

Figure 4. Typical character array storage in scratchpad memory

www.manaraa.com

30

The SD register shown in Figure 2 was added to permit decrementing

the memory address registers, not with the referencing command, but with

a single command called move and decrement. Certain operations are

awkward without the facility for moving in the opposite direction through

an array, a list of parameters or a multiple byte operand. For example,

in the addition subroutine in Appendix B each of the operands is assumed

to be stored with the least significant byte in the memory location with

the smal]<address. The use of the SD register and the associated

move and decrement command permits storing the operands in the opposite

sense.

When a program calls for a single parameter or a few scattered

parameters, this pseudo indirect addressing scheme is less efficient than

for array processing. Also, when entering a new subroutine the contents

of one or more of the memory address registers that is used by the

subroutine may still be valid. To ease these situations 32 two byte

groups can be addressed directly with read and write dedicated location

control commands. Their mnemonics are RDL, RDLB and WDL. Several of

programs in Appendix B make use of these dedicated locations in the

scratchpad memory.

One additional type of command was implemented as well. When

certain parameters or scratchpad memory addresses are fixed, they might

as well be stored in the control memory. The line thinning program in

Appendix B requires the array size to be specified. These numbers are

likely to be fixed for a particular recognition algorithm. Consequently,

they were carried as parameters in the control memory and moved'to

www.manaraa.com

31

registers early in the subroutine.

Note that the pseudo indirect addressing scheme, with some planning

on the part of the programmer, can provide essentially completely

relocatable array and parameter storage in the scratchpad- This says

that the same control memory subroutines can be used regardless of

where in the scratchpad memory the data is stored.

Bus Control Techniques

The major buses in this system fall into three classes as far as

bus control is concerned. The control bus is the most straightforward

of the three classes. There is only one data source, the output register

of the control memory. Consequently, there need be no gating onto the

bus. The lines can be tied to the register flip flops through amplifying

buffers- Similarly, information can be taken off the control bus and put

directly into local decoding networks without any control other than a

signal defining the validity of the bus information.

The SM bus is shared by a number of data sources and data destina­

tions- Since there is no convenient way of predicting future bus use at

any point in time, all gating onto the bus is of a temporary nature. The

data is held on the bus only long enough to be registered in the

destination register. Since all destinations are registers this is

quite acceptable. Also, the only acceptable way of gating from the bus

to a register is to do it with pulsed transfer gates.

The three data buses also are shared by a number of data sources

and destinations. However, here bus use can be determined for at least

the subroutine being executed. Consequently, the control of data flow

www.manaraa.com

32

via the data buses is handled quite differently than for the SM bus.

Each register that can be connected to the data buses has two control

flip flops associated with it that determine to which of the data buses

it is to be connected. The alternative of no connection is also

possible. One command, the RBS command, is a setup command and fixes

all connections to the data buses until a subsequent setup command is

executed. This is a double length command, the only one implemented,

but thought to be a worthwhile exception. Note that the contents of

several registers can be placed on one data bus. The result is the bit

by bit logical inclusive OR of the contents of the registers connected

to the data bus.

Many subroutines require only one setup command. The decision to

implement three data buses was made to make this possible. The first

three sample subroutines in Appendix B do require only one setup

command. The multiplication subroutine requires rearranging the con­

nections to the data buses when an addition cycle is required. Typically,

the connections to the data buses would be set early in a subroutine. The

particular connections would depend on the purpose of the subroutine and

the whim of the programmer.

One command controls the gating from the data buses to the registers

implemented as destination registers. The gating is a pulsed transfer

with a particular register receiving data from only one data bus.

However, the contents of one data bus can be transferred to several

registers, and the contents of all three data buses can be transferred

in parallel.

www.manaraa.com

33

The interaction between the data buses and the adder inputs is

slightly different. Each of the two,byte wide adder inputs has three

control flip flops associated with it. Two of the flip flops determine

which of the three data buses is to be connected to the input. The

third determines whether the bus contents or the one's complement of the

bus contents is to be connected. These six flip flops are set with one

adder setup command, the BAS command. Since the connections, when

established, remain until changed by a subsequent BAS command, the adder

continuously forms the sum of whatever is connected as Inputs. The

output of the adder is treated as a potential source of data for the

three data buses. One result of this adder gating scheme is that the

command set does not need an add command.

Logical Manipulation of Data

The bit processing logic of this system represents the heart of the

system. This is the area of the system where care was taken to provide

substantial logical capability and versatility at a moderate cost.

Further, the ability to perform logical manipulations in a reasonable

time with a near minimum number of commands was also important since

these operations tend to be inner loop operations in bit processing

subroutines.

The bit processing logic consists essentially of the L, M and R

registers, the logic and the commands connecting these processing

registers to the counters and the eight counters. It is convenient to

view this bit processing logic in two ways. First, it represents a

convenient facility for counting bits, either ones or zeros, in a

www.manaraa.com

34

character array. This same facility also represents substantial

combinational logical capability for bit processing.

Counting operations

A number of the jobs in the feature extraction phase of character

recognition algorithms can be reduced to the job of counting the number

of ones or perhaps the number of zeros in some area of a character array.

Summing the number of ones in the entire array, for example, might help

to distinguish punctuation marks from alphabetic characters. Or, summing

the number of ones in the upper half of an array should help to

distinguish certain of the lower case letters from capital letters. An

E might be distinguished from an F by counting the number of ones in the

lower central portion of the array. The subroutine to sum all ones in

a specified rectangular area of an array shown in Appendix B is an

illustration of the type of counting application expected.

In this subroutine the array is assumed to be stored as illustrated

in Figure 4. Array data is moved to the L register a byte at a time and

counted with an SCLM command. At the end of each horizontal pass over

the horizontal range specified the contents of the eight counters are

added to the previous sum. As many horizontal passes are made as

specified by the vertical range parameter. A mask byte is provided for

each horizontal pass to permit the vertical range to actually be any

number of bits rather than restricting it to byte boundaries. The

numeric limits on the maximum row count and the total count reflect the

length of the counters and the length of the adder. For the arrays

expected these limits seem reasonable. However, greater effective

www.manaraa.com

35

limits can be had with the present system by using a more involved

program. If the horizontal range can exceed the counter limit two or

more counter summations would have to be included in each horizontal

pass. If the accumulated sum can exceed one byte this condition would

have to be detected and some action taken. Perhaps noting the overflow

by setting a bit in the flag register with a FSOV command would be

adequate. In a situation where the actual sum is important, multiple

byte addition could be programmed.

The full power of the counting commands is not used in the example

subroutine. If the horizontal range can be limited to some multiple of

three, or if specific checks are programmed, the array bytes can be

brought into the L, M and R registers three at a time. The ones in the

three bytes can be counted with one SCSM command. If the multiple-of-

three restriction on the horizontal range can be tolerated this variation

would reduce the execution time substantially.

This example was stated in terms of counting ones. Counting zeros

can be done with a trival change in the program. In fact, there are at

least two ways to count zeros rather than ones by modifying the existing

subroutine. One way would be use a read complement command (RCl) rather

than a read command (Rl) when bringing a byte from the scratchpad to the

L register. The other way would be to modify the counting parameter

associated with the SCIW command so that the counters are incremented with

a zero present in the register rather than with a one present.

www.manaraa.com

36

Logical operations

Any combinational Boolean function can be generated from the OR and

INVERT functions. The bit by bit OR of two or three bytes can be

achieved in this system by loading the bytes in the L, M and R registers,

executing an SCL command and treating the contents of the least

significant vertical slice (the eight bit register called Cg) of the

counters as the result. Inversion of an eight bit byte can be done by

loading the byte in L, M or R, executing an SCL command and again

treating the contents of as the result. Since these two logical

operations can be performed, any combinational function of boolean

variables can be generated. This generality is important, but says

little about speed or convenience of generating various functions. The

following paragraphs are intended to show how several functions can be

generated in a reasonable fashion.

Suppose the bit by bit AND of two bytes is desired. This can be

done by loading them in the L and M registers and executing a SCS

command. The bit by bit AND is the byte in the vertical counter slice

Cg. The ability to invert a byte for counting purposes makes generating

the AND of complemented boolean variables very simple also. That is, it

costs no more in time to form A'B than it does to form A*B.

Since the variables likely to be combined in this processor are

nearest neighbors of a particular bit the ability to perform a temporary,

single bit shift prior to counting was included in the counting commands.

For example, suppose the byte being processed is in the M register with

its neighboring bytes in the L and R registers. Consider the i^^ bit, M^.

Suppose the AND of the neighbor above and to the left, Li_i, with the

www.manaraa.com

neighbor below and to the right, is desired. That is, the i^^ bit

of the processed byte, P^, is to be given by

Pi = • Ri+i for i = 0, 1, 2, •7.

This can be done with a single SCS command in which L is shifted down one

place and R shifted up one place prior to the count. Note that the

register contents are returned to their original positions after the

counting is done.

One of the preprocessing, noise smoothing operations that may be

required for some recognition algorithms is a line thinning operation.

Such a job can be stated in terms of a thresholding operation. For

example, consider the following processing criterion. A given bit in

the unprocessed array has eight nearest neighbors. These nine bits are to

be considered in determining the corresponding bit in the processed

array. If seven or more of these nine bits are ones then make the

processed bit a one. Otherwise, the processed bit is to be made a

zero. This operation tends to make lines in the processed array two bits

narrower than corresponding lines in the unprocessed array. It also

removes stray ones and fills small holes.

This type of operation is awkward on general purpose computers.

This system can do this job, and other thresholding jobs quite

conveniently. The second subroutine given in Appendix B is specifically

intended for this job. Basically, the way in which the thresholding is

accomplished is to count a bit and its eight nearest neighbors. Once

the three bytes are in the L, M and R registers this takes three SCS

commands. Then the counters are incremented by one. At this point the

www.manaraa.com

38

desired byte can be found in C^,

Other thresholds can be obtained in a similar fashion. For some

thresholds the ability to obtain the OR of several of the vertical

counter registers on a data bus simplifies the thresholding job. One

example is for a threshold of two when the count can range from zero to

nine. After the neighbors are counted the OR of vertical registers

Cg, Cq and would represent the processed character.

Arithmetic

Much more attention has been paid to the logical manipulation of

data than to arithmetic operations in this system. All arithmetic

beyond single byte additions must be programmed. The third subroutine

in Appendix B is an example of doing multiple byte addition. This

particular example shows only the addition of positive numbers. However,

if the assumption can be made that negative numbers are stored in two's

complement form, addition of signed numbers follows. Further, since the

provision has been made to gate the complement of the contents of the

data buses to the adder inputs along with being able to set the carry

into the least significant adder stage to either one or zero, the

ability to present the adder with the two's complement of an operand is

built in. This means that subtraction of signed numbers also follows

directly from the simple addition example given.

The assumption was made that multiplication would be done by a

series of additions and shifts using the L, M, R and MIR registers to

hold the operands. A powerful shift command and commands to test the

least significant bits of the three data buses were implemented to

www.manaraa.com

39

make multiplication easily programmable. The final example in Appendix

B shows a way of obtaining the double length product of two single byte

operands.

In this subroutine the L and M registers are considered as a unit

and contain the partial product. The MIR register holds the multiplicand,

and the multiplier is in the R register. The multiplier is examined a

bit at a time by placing the contents of the R register on a data bus

and testing the least significant bit of the data bus. The outcome of

the test determines whether to add the multiplicand to the parital

product and then shift one place, or to simply shift one place.

The multiplication of multiple byte operands follows directly from

the multiplication example given, but would be a rather time consuming

operation. This could be done by performing a series of the single byte

multiplications shown followed by a summing operation.

Division is also possible. This follows from the ability to subtract

and the ability to shift operands and test the most significant bits of

the three data buses. Division would tend to be slightly more time

consuming than multiplication.

www.manaraa.com

40

CONCLUSIONS

This investigation and the resulting system demonstrate the

feasibility of building special purpose computing systems for experi­

menting with various handprinted character recognition algorithms. The

recognition algorithms can be quite varied, and may even be adaptive in

nature.

The capability for modifying the recognition algorithms comes

about primarily because of two features of the system. First since an

electrically alterable control memory is used for storing the recognition

algorithms, modifying an algorithm or substituting a completely different

algorithm is quite possible. The power and versatility of the logic of

the bit processing hardware provides the capability for varied bit

processing tasks. This unique combination of counters, logic and control

commands is crucial to the type of processing expected.

The combination of the control memory and the pseudo indirect

addressing scheme used makes the implementation of adaptive recognition

algorithms convenient. For example, the subroutine, presented in

Appendix B, that is used to count the number of ones in some area of a

character array is basically an adaptable subroutine. All that is

required to change the range of a probe is to change the range parameters

or perhaps the mask parameters carried into the subroutine. The ability

to change probe range might allow the accommodation of significant

differences in handprinted characters.

A comparison of subroutine execution times for this system and for

a general purpose system points up the desirability of having special

www.manaraa.com

41

purpose hardware to do special purpose processing. Estimates of

execution times on this system were made for the first two subroutines

presented in Appendix B, These same jobs were programmed in IBM 360

machine language, and execution times calculated from instruction

execution timing information for the IBM 360/65,

The subroutine to count ones is expected to take about 175 micro­

seconds on this system for an entire 32 by 24 bit array and the line

thinning operation is expected to take about 425 microseconds. Times

to do these jobs on the IBM 360/65 are greater by a factor of about 2 5.

This, even though logic speeds and effective memory speeds are quite

comparable for the two systems,

A character recognition rate of 100 characters a second permits

spending an average of ten milliseconds on each character. For the

execution times expected the IBM 360/65 would require 425 x 25 or some­

thing over ten milliseconds to do the line thinning, preprocessing

operation. Obviously, a 100 character a second character rate cannot

be achieved on the IBM 3 60/65 if this sort of a line thinning operation

is required for the recognition algorithm being used.

The line thinning operation involves the entire character array

and considerable processing. It is thought to be one of the most time

consumming of the expected operations. The average execution time per

feature extracted is expected to be less than 200 microseconds. At

this rate 25 features could be extracted in five milliseconds leaving

another five milliseconds for the classification job. These tentative

figures indicate that this system should be able to meet the design

specification of 100 characters per second.

www.manaraa.com

42

On the other hand this system requires about 16 microseconds to

add two 32 bit numbers and about 45 microseconds to multiply two single

byte numbers. These execution times are not competative with general

purpose computer add and multiply times.

The average length of the four subroutines presented in Appendix B

is approximately 25 control memory words. With 2048 words of control

memory available, 80 such subroutines could be stored in this memory.

This capacity is consistent with expected average execution times and

the amount of processing anticipated, and appears to an adequate

capacity.

This system also demonstrates that the special purpose processing

hardware for a job such as thft; recognition of handprinted characters can

be achieved at moderate cost with presently available devices. This

system uses approximately 3000 RTL integrated circuit packages for all

logic outside of memory drive and sense circuitry. This represents a

cost of about $1200. The simplicity of the packaging technique used

insures moderate fabrication cost, probably not more than three times

component cost.

Obviously, memory cost, document reader cost and power supply cost

are not included in the cost figure mentioned. These system elements

must be included in any system capable of doing this job, and so do not

bear on added expense for special purpose processing hardware.

Perhaps for some future system the 100 character per second rate

discussed here is inadequate. One way of increasing the character rate

would be to incorporate a greater degree of parallelism in the processing

section. For this system very little would have to be done in any

www.manaraa.com

43

section other than in the processing section. Neither memory would

be affected, nor would most of the control except for drive require­

ments. In the processing section register length, the amount of logic,

the number of counters, the length of the adder and data bus width would

all scale up linearly with increased parallelism. These increases come

at relatively low cost, since they consist chiefly of logic, power

supply capacity and fabrication. It looks quite feasible to build an

economic system with greater parallelism incorporated.

The packaging technique used favors a bus oriented system. Proper

organization of a bus oriented system makes an expandable system possible.

For example, in this system the SD register and the special command

associated with it discussed in a previous section were added by adding

a partially filled board. This addition made minor changes necessary

on only two other boards. This is typical of the capability for adding

new hardware and associated control commands for this type of system

organization.

No similar claim is made for this system for the increased

parallelism type of expansion. However, if this type of expansion

capability rather than the capability of adding new commands in a design

goal in the original design it can be achieved. This sort of thing must

be planned for. It strongly influences such decisions as system

partitioning.

The special purpose processing capability suggested for character

recognition and special processing capability for other jobs as well

might take one of two forms. It might be a complete system such as the

one described here. The special purpose processing capability might

www.manaraa.com

44

also be added as an extension to a general purpose computer, providing

the design techniques used in designing the general purpose computer

permit system expansions. This system demonstrates that such design

techniques do exist.

A point with general digital system application is demonstrated by

this investigation and the resulting system. System design rules and

minimization criteria should change with changing cost ratios and

component reliabilities. A gate count is fast becoming a useless

exercise.

It would be quite delightful to have a nice, compact set of total

system minimization rules. However, with or without such a set of rules

it seems abundantly clear that low cost logic in forms ranging from now

standard integrated circuits to large scale integration (LSI) will be

increasingly applied to ease jobs now being done, and will also be

applied in new areas beyond present machine capability.

www.manaraa.com

1

2

3

4

5

6

7

8

9

10

11

45

LITERATURE CITED

Rice, Rex, Keith Uncapher, Tom Steel, and L. C. Hobbs. Promising

avenues for computer research. AFIPS [American Federation of

Information Processing Societies] Fall Joint Computer Conference

Proceedings 27, Part 2; 85-100. 1965.

Rice, Rex. Impact of arrays on digital systems. Institute of

Electrical and Electronic Engineers Journal of Solid-State Circuits

2, No. 4: 148-155. 1967.

Bashkow, Theodore R., Agra Sasson, and Arnold Kronfeld. System

design of a FORTRAN machine. Institute of Electrical and Electronic

Engineers Transactions on Electronic Computers 16, No. 4: 485-499.

1967.

Mullery, A. P., R. F. Schauer, and R, Rice. Adam: a problem-

oriented symbol processor. AFIPS Spring Joint Computer Conference

Proceedings 23; 367-380. 1963.

Mendelson, Myron J. and A, W, England. The SDS sigma-7: a real-^

time time-sharing computer. AFIPS Fall Joint Computer Conference

Proceedings 29: 51-64. 1966.

McCullough, James D., Kermith H. Speierman, and Frank W. Zurcher.

A design for a multiple user multiprocessing system. AFIPS Fall

Joint Computer Conference Proceedings 27, Part 1; 611-617. 1965.

Gibson, Charles T. Time-sharing on the IBM system/360: model 67.

AFIPS Spring Joint Computer Conference Proceedings 28: 61-78.

1966.

Corbato, F. J., M. Merwin-Daggett, and R. C. Daley. An experimental

time-sharing system. AFIPS Spring Joint Computer Conference

Proceedings 21: 33 5-3 55. 1962.

Bryan, G. E. JOSS; 20,000 hours at a console — statistical

summary. AFIPS Pall Joint Computer Conference Proceedings

31; 769-777. 1967.

Shaw, J. C. JOSS: a designers view of an experimental on-line

computing system. AFIPS Fall Joint Computer Conference Proceedings

26, Part 1: 455-464. 1964.

Stevens, M. E. Automatic character recognition — a state of the

art report. National Bureau of Standards Tech. Note 112. 1961.

www.manaraa.com

46

12. David, E. E., Jr. and 0. G. Selfridge. Eyes and ears for computers.

Institute of Radio Engineers Proceedings 50: 1093-1101. 1962.

13. Holt, A. W, Character recognition using curve tracing. U.S. Patent

3, 142, 818. July 28, 1964.

14. Liu, C. N. and G. L. Shelton, Jr. An experimental investigation of

a mixed-font print recognition system. Institute of Electrical and

Electronic Engineers Transactions on Electronic Computers

15: 916-925. 1966.

15. Bomba, J. S. Alpha-numeric character recognition using local

operations. AFIPS Eastern Joint Computer Conference Proceedings

16: 218-224. 1959.

16. Doyle, Worthie. Recognition of sloppy, hand-printed characters.

AFIPS Western Joint Computer Conference Proceedings 47: 173 7-1752.

1959.

17. Unger, S. H. Pattern detection and recognition. Institute of

Radio Engineers Proceedings 46: 173 7-1750. 1959.

18. Alt, F. L, Digital pattern recognition by moments. Association

for Computing Machinery Journal 9: 240-258. 1962.

19. Bledsoe, W. W. and I. Browning. Pattern recognition and reading

machine. AFIPS Eastern Joint Computer Conference Proceedings

16: 225-232. 1959.

20. Fu, King-Sun, Y, T. Chien, and Gerald P. Cardillo. A dynamic

programming approach to sequential pattern recognition. Institute

of Electrical and Electronic Engineers Transactions on Electronic

Computers 16: 790-803. 1967.

21. Duda, R. 0. and H. Fossum. Pattern classification by iteratively

_ determined linear and piecewise linear discriminant functions.

Institute of Electrical and Electronic Engineers Transactions on

Electronic Computers 15: 220-232. 1966.

22. Highleyman, W. H. Linear decision functions with application to

pattern recognition. Institute of Radio Engineers Proceedings

50: 1501-1514. 1962.

23. Chow, C. K. An optimum character recognition system using decision

functions. Institute of Radio Engineers Transactions on Electronic

Computers 6: 247-254. 1957.

24. Amari, Shunichi. A theory of adaptive pattern classifiers.

Institute of Electrical and Electronic Engineers Transactions on

Electronic Computers 16: 299-307. 1967.

www.manaraa.com

47

25. Bonner, R. E, Pattern recognition with three added requirements.

Institute of Electrical and Electronic Engineers Transactions on

Electronic Computers 15: 770-781. 1966.

26. Dimond. T. L. Devices for reading handwritten characters. AFIPS

Eastern Joint Computer Conference Proceedings 12: 232-237. 1957,

27. Brown, Richard M. On-line computer recognition of handprinted

characters. Institute of Electrical and Electronic Engineers

Transactions on Electronic Computers 13: 750-752. 1964.

28. Teitelman, Waren. Real time recognition of hand-drawn characters.

AFIPS Fall Joint Computer Conference Proceedings 26; 559-575. 1964.

29. Groner, Gabriel F. Real-time recognition of handprinted text.

AFIPS Fall Joint Computer Conference Proceedings 29: 591-601. 1966.

30. Fischer, George L., Jr., Donald K. Pollock, Bernard Raddack, Mary

Elizabeth Stevens, eds. Optical character recognition. New York,

N.Y., Spartan Books. 1962.

31. Wilson, Robert A. Optical page reading devices. New York, N.Y.,

Reinhold Publishing Corporation. 1966.

32. British Computer Society. Document Handling and Character

Recognition Committee, 1966. Character recognition, 1967.

London, England, author. 1967.

www.manaraa.com

48

ACKNOWLEDOIENTS

The author wishes to express his thanks to R. M. Stewart for his

encouragement and remarkable patience. The author wishes to thank

A. V. Pohm for serving as a sounding board for ideas, many of which

wilted and died. Also, the author wishes to thank Renny, Dick and the

others who are making this system a physical reality. Finally, the

author wishes to thank Sheila for her help in typing the first draft of

this document.

This work was partially supported by the Iowa State Affiliates

Program in Solid State Electronics.

www.manaraa.com

49

APPENDIX A. SYSTEM CCMMAND SET

The commands implemented in this system are described in this

appendix. The commands are 20 bits in length except for one, double

length command. The general form is an eight bit operation code

followed by twelve bits of parameter information.

The commands are grouped according to general function rather than

in any numeric order. The command types in the order in which they

appear and the members of each group are listed below.

1. Branching commands

JSB, SR, JNZDl, JNZD2, JNZD3, JNZD4, JNZD5

JNZl, JNZ2, JNZ3, JOVl, J0V2, J0V3, JLSl, JLS2, JLS3

TFO, TFl, m

2. Test and set commands

FSNZl, FSNZ2, FSNZ3, FSOVl, FS0V2, FS0V3, FSLSl, FSLS2, FSLS3

3. Scratchpad memory commands

Rl, RCl, R2, RC2, RDL, RDLB, W1, W2, W3, WDL

4. Data movement commands

MOVE, MAI, MA2, MA3, MA4, MD

5. Data bus setup and transfer commands

RBS, BRI, BAS

6. Clear and set commands

CLEAR, SCI, SI, SCM

7. Shift and count commands

SCLM, SCSM, SCL, SCS, SNC

www.manaraa.com

50

Branching Commands

Subroutine jump

JSB A

19 12 11 0

First, the contents of the CMAR (next command location) is stored in

a push-down stack formed in the scratchpad memory. Then an unconditional

jump command is executed. The limit on nesting subroutines is eight.

Subroutine return

SR

18

19 12 11 0

Take the next command from the control memory location given by the

top entry in the push-down stack.

Decrement and test D register 1_

JNZDl

19 12 11 0

First, decrease the contents of D register 1 by one. Then, if the

contents of the register is not equal to zero take the next command from

control memory location A^. Otherwise take the next command in sequence.

www.manaraa.com

51

Decrement and test D register 2^

JNZD2 A,

19 12 11

Same as JNZDl except the D register 2 is involved.

Decrement and test D register 2

JNZD3 A,

19 12 11

Same as JNZDl except the D register 3 is involved.

Decrement and test D register 4

JNZD4

19 12 11

Same as JNZDl except the D register 4 is involved.

Decrement and test D register ̂

JNZD5 A,

19 12 11

Same as JNZDl except the D register 5 is involved.

www.manaraa.com

52

Unconditional jump

JUG A,

19 12 11 0

The contents of the CMAR is replaced with A^. Consequently, the

next command is taken from control memory location A^.

Non-zero jump on DBl

JNZl A,

19 12 11 0

If the byte on DBl (middle eight bits) is non-zero take the next

command from control memory location Aj. Otherwise take the next

command in sequence.

Non-zero jump on DB2

JNZ2 A,

19 12 11 0

This command is the same as JNZl except the test is on DB2.

www.manaraa.com

53

Non-zero jump on DBS

JNZ3 A,

19 12 11 0

This command is the same as JNZl except the test is on IB3

Overflow jump on DEI

JOVl Aj

19 12 11 0

If the most significant bit of EBl (i.e. DBl_j) is non-zero take the

next command from control memory location A^. Otherwise take the next

command in sequence.

Overflow jump on DB2

J0V2 Ai

12 11

This command is the same as JOVl except the test is on DB2.

www.manaraa.com

54

Overflow jump on DB3

J0V3 Aj

19 12 11 0

This command is the same as JDVl except the test is on DB3.

Least significant jump on DBl

JLSl Aj

19 12 il 0

1
If the least significant bit of the eight-bit byte on DBl (i.e.

DBLy) is non-zero take the next command from control memory location

A^. Otherwise take the next command in sequence.

Least significant jump on DB2

JLS2 Aj

19 12 11 0

This command is the same as JLSl except the test is on DB2.

Least signif icant jump on IB3

JLS3 Aj

19 12 11

www.manaraa.com

55

This command is the same as JLSl except the test is on DB3.

Test flag register for zeros

TFO M,

19 12 11 8 7 0

If the flag register has zeros in at least the bit positions

corresponding to the ones of take the next command in sequence.

Otherwise skip one command (one control memory location).

Test flag register for ones

TFl M,

19 12 11 8 7 0

If the flag register has ones in at least the bit positions

corresponding to the ones of take the next command in sequence.

Otherwise skip one command (one control memory location).

Increment and test I^

ITI

A1

T9 Ï2 11 3^^ 0

Increment the I register by one. Then if I take the next

command in sequence. Otherwise skip one control memory command (one

www.manaraa.com

56

control memory location).

Test and Set Commands

Non-zero flag set on DBl

FSNZl M

19 12 11 8 7 0

If the byte on DBl (middle eight bits) is non zero set ones in the

flag register wherever there are ones in the corresponding bits of M^.

Non-zero flag set on DB2

FSNZ2

32 M,

19 12 11 8 7 0

This command is the same as FSNZl except the test is on DB2-

Non-zero flag set on DB3

FSNZ3 M,

33 M,

19 12 11 8 7 0

This command is the same as FSNZl except the test is on DB3.

www.manaraa.com

57

Overflow flag set on DBl

FSOVl Mj

19 12 11 8 7 0

If the most significant bit of DBl (i.e. DBl) là non-zero set
— J.

c-nes in the flag register wherever there are ones in the corresponding

bits of the M^,

Overflow flag set on DB2

FS0V2

19 12 11 8 7 0

This command is the same as FSOVl except the test is on the most

significant bit of DB2.

Overflow flag set on ES3

FS0V3

19 12 11 8 7 0

This command is the same as FSOVl except the test is on the most

significant bit of DB3. ^

www.manaraa.com

58

Least significant flag set on DBl

FSLSl M,

19 - 12 11 8 7 0

If the least significant bit of the eight-bit byte on DBl (i.e.

DBly) is non-zero set ones in the flag register wherever there are ones

in the corresponding bits of the ,

Least significant flag set on DB2

FSLS2 Ml

19 12 11 8 7 0

This command is the same as FSLSl except the test is on DB2.

Least significant flag set on DB3

FSLS3 M,

19 12 11 8 7 0

This command is the same as FSLSl except the test is on DB3.

www.manaraa.com

59

Scratchpad Memory Commands

Read scratchpad memory, type 1

R1 Pg, P3

40 Pi P2 P3

19 12 11 10 9 5 4 0

The padded byte (i.e. an eight-bit byte'plus a bit on each end)

specified by the contents of MAR (memory address register) Pg is read

from the scratchpad, placed on lines -1, 0, 1, •••, 8 of the SM bus,

and transferred to the destination register specified by P^. Table 1

specifies the coding for the various registers.

Pg^ specifies the amount by which MAR P^ is to be incremented after

the memory cycle as follows:

00 — no increment

01 — increment by 1

10 — increment by 2

11 — increment by 8.

Read scratchpad memory complement, type _1

RCl P^, Pg, P3

41 Pi P2 P3

19 12 11 10 9 5 4 0

This command is identical to Rl, except the bit by bit complement

of the 10 bits in memory is loaded in the specified register.

www.manaraa.com

60

Table 1. Destination specification for read scratchpad memory commands

Register Destination specification

CMAR

MARl

MAR2

MAR3

MAR4

L

M

R

D1

D2

D3

D4

D5

CM

FLAG

SD

OUTPUT DEVICE 1

OUTPUT DEVICE 2

00000

00001

00010

00011

00100

00101

00110

00111

01001

01010

01011

01100

01101

10001

10010

10011

11001

11010

www.manaraa.com

61

Read scratchpad memory, type 2

R2 Pg, P3

42 Pi P2 P3

19 12 11 10 9 5 4 0

This command is identical to R1 except 16 bits from memory

(starting at an even byte boundry) are put on lines 0-15 of the SM bus

and transferred to the destination register.

When the destination register is a 12-bit register the contents of

lines 4-15 are actually registered.

When the destination is an 8-bit register the contents of lines

0-7 are actually registered.

Read scratchpad memory complement, type 2

RC2 Pj, Pg. P3

43 Pi P2 P3

19 12 11 10 9 5 4 0

This command is identical to R2 above except the bit by bit

complement of the 16 bits in memory are transferred.

Read scratchpad memory, dedicated location, type 1^

RDL Pg. P,

44 —
^2 P3

19 12 11 10 9 5 4 0

This command permits the reading of the last 8 words in variable

www.manaraa.com

62

memory as 32 16-bit units. specifies which of the 32 units is to

read. Pg specifies the register in which the read information is to be

registered.

Read scratchpad memory, dedication location, type 2^

RDLB Pg, P3

—

45 — P2 ^3

19 12 11 10 9 5 4 0

This command permits the reading of the least significant half only

of the 32 dedicated 16-bit units of memory. P^ specifies which of the 32

units to be read. Pg specifies the register in which the read informa­

tion is to be registered.

Write scratchpad memory, type 1

W1 Pi, Pg, P3

48 P2 ^3

19 12 11 10 9 5 4 0

The eight-bit byte on lines 0, 1, •••, 7 of the SM bus is stored

in the scratchpad location specified by the contents of MAR P^. The

source of the byte is the register specified by Pg. Table 2 specifies

the coding for the various registers. MAR Pg is then incremented by

Pj (see Rl).

www.manaraa.com

63

Table 2. Source specification for write scratchpad memory commands

Register Source specification

CMAR

MARl

MAR2

MAR3

MAR4

IBl

DB2

DBS

PDR

D1

D2

D3

D4

D5

CM

FLAG

SD

MIR-DB3

INPUT DEVICE I

INPUT DEVICE 2

00000

00001

00010

00011

00100

00101

00110

00111

01000

01001

01010

01011

01100

01101

10001

10010

10011

10000

11011

11100

www.manaraa.com

64

Write scratchpad memory, type 2

W2 P^, Pg, P3

49
^1 ^2 ^3

19 12 11 10 9 5 4 0

This command is the same as W1 except 16 bits are stored. These

16 bits come from the specified register via lines 0-15 of the SM Bus.

Storage begins on an even byte boundary.

Write scratchpad memory, type 3

W3 Pi, Pg, P3

4A P, P„ P., 4A
1 2 3

19 12 11 10 9 5 4 0

This command is like W1 except 32 bits are stored. These 32 bits

come via lines 0-31 of the SM Bus. Storage begins on a half-word

boundary.

Write variable memory, dedicated location

WDL Pg, P^

4B — ^2 •^3

19 12 11 10 9 5 4 0

This command permits writing 16 bits in one of the last 8 memory

words. P3 specifies which of the 32 16-bit units to be written into.

P2 specifies the source of the information to be written.

www.manaraa.com

65

Data Movement Commands

Move on SM bus

MOVE Pg,

47 — ^2 ^3

19 12 11 10 9 5 4 0

Move the contents of the register specified by Pg to the register

specified by P^. When source and destination registers are different

lengths, normal SM bus connections will be maintained. Zeros will be

transferred to register bit positions not defined by the source

register.

Move address 1^

MAI Aj

19 12 11

Move the address A^ to MARl

Move address 2

MA2 A,

19 •> 11

Move the address A^ to MAR2.

www.manaraa.com

66

Move address 3^

MA3

19 12 11 0

Move the address A^ to MAR3.

Move address 4

MA4 A,

19 12 11

Move the address A^ to MAR4

Move and decrement

MD
^1' ̂ 2 ' ̂ 3

4F
^2 ^3

19 12 11 10 9 5 4 0

Transfer the contents of the MAR defined by to the SD register,

decrement the contents of the SD register by an amount specified by

and return the modified contents of the SD register to the MAR specified

by Pg"

The possible decrements and their specifications are;

www.manaraa.com

67

00 — no decrement

01 — decrement by 1

10 — decrement by 2

11 — decrement by 8

Data Bus Setup and Transfer Commands

Register to data bus setup

RBS list

91 L M R MIR ADDO —

19 12 11 10 9 8 7 6 5 4 3 2 1 0

FLAG
^i CA S

o

a
 % CE

19 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Connect the register to the data buses as specified. The specifi­

cation for a register is as follows:

00 no connection

01 register is connected to DBl

10 register is connected to DB2

11 register is connected to DB3 .

Once a connection is established it will exist until a subsequent

RBS command changes it. Note that this is a double length command.

www.manaraa.com

68

Data bus to register transfer

BKT list

90 L M R MIR CM F

19 12 11 10 9 8 7 6 5 4 3 2 1 0

Transfer the contents of the data buses to the registers as

specified. The specification for a register is as follows:

00 — no transfer

01 — transfer from DBl

10 — transfer from DB2

11 — transfer from DB3.

Data bus to adder setup

BAS N^, P^; Ng,

81 «1 N2 ^2

1 9 1 2 1 1 9 8 7 6 5 3 2 1 0

Setup the inputs to the adder as specified. P^ and P^ specify the

data bus to be connected to adder inputs one and two respectively. The

specification is as follows:

00 — NUL

01 — DBl is connected

10 — DB2 is connected

11 — DB3 is connected.

Nj and Ng specify whether the bus contents or the bit by bit complement

of the bus contents is to be connected to the respective inputs

www.manaraa.com

69

(0 — bus contents, 1 — complement of bus contents). These connections

exist changed by a subsequent BAS command.

Clear and Set Commands

Clear registers

CLEAR list

80 L M R MIE CM F CA cc % —

19 12 11 10 9 8 7 6 5 4 3 2 1 0

Clear the register(s) specified by ones in the corresponding

address bit position to zero.

Set carry in

SCI

83 Nl 83 Nl

19 12 11 10

Set the carry dnto the least significant adder stage to agree

with .

Set I

SI P,

AO

19 12 11 3 2 0

Set the I register to the value given by

www.manaraa.com

70

Set count mask register

SCM

C3 C3
y

19 12 11

Set all bits of the CM register to one.

Shift and Count Commands

Shift and count logical (masked)

SCLM
^L' ^M' ^R' '"L' Si' S

CO SL SM Si ^R

19 12 11 10 9 8 7 6 5 4 3 2 1 0

In this command three steps are done in sequence.

1. L, M and R are shifted one place according to the values of

S^, S^ and S^ respectively. The specification is:

00 — no shift

01 — shift down

10 — shift up

11 — not allowed

2. The counting called for by C^, C^ and C^ is done. A count

may occur only on the counter levels for which thé CM (count

mask) register contains a one. Suppose level j of CM is one.

Then for C^ equal to:

www.manaraa.com

71a

00 no count regardless of L^.

01 count if Lj = 0

10 count if L; = 1
J

11 count regardless of Lj.

Similar specifications hold for applying to the M

register and applying to the R register. The outcome

of the tests on the three registers are OR'ed together

so a particular counter may be incremented by one or not at

all.

3- Finally, the registers are shifted back to their original

positions.

Shift and count successively (masked)

SCSM S^. 8%, Sg,; C^,

CI SR S

19 12 11 10 9 8 7 6 5 4 3 2 1 0

This command is identical to SCI24 except for one difference. Here

the count specification and register contents are examined successively

for the three registers involved. A particular counter may be incre­

mented by zero, one, two or three as a consequence of this command.

Shift and count logical

SCL

04 S
L SR ^R

19 12 11 10 9 8 7 6 5 4 3 2 1 0

www.manaraa.com

71b

This command is identical to SCIM except that the CM register is

ignored.

Shift and count successively

ses s^. s„. s^; Cj_, C^. Cg

C5 SM ^M

19 12 11 10 9 8 7 6 5 4 3 2 1 0

This command is identical to SCSM except that the CM register is

ignored.

Shift, no count

SKC Sj,, S„, Sr: E^. Eg

C2 SL ^M SR E,
JU ^R

19 12 11 10 9 8 7 6 S 4 3 2 1 0

Shift L, M and R one place according to the values of S.^, S^ and

S^ respectively. (See SCLM for the shift specification rules.) The end

connections are set by the E specifications. For a particular register

the specifications are:

00 — shift a zero in

01 — shift a one in

10 — independent circular shift

11 — shift in contents of opposite end

of adjacent register

(See Figure 5).

www.manaraa.com

72

Figure 5. End connections for SNC command

www.manaraa.com

73

APPENDIX B. SAMPLE PROGRAMS

Several symbolic programs are presented to show ways in which the

command set and the hardware can be used for several typical processing

jobs expected.

Sum all Ones in a Specified Rectangular Area

The flowchart for this subroutine is given in Figure 6, and the

symbolic program is presented as Table 3. The purpose of this subroutine

is to sum the total number of ones in a specified rectangular area of

the array. ' The area is specified by a list of parameters stored in the

scratchpad memory.

The initial assumption is that MAR3 contains the location of the

first parameter in the list. The list consists of the following parameters

stored in the order listed:

1. initial byte location (IBLOC)

2. horizontal range in bits (HR)

3. vertical range in bytes (VR)

4. as many mask'bytes as there are bytes of vertical range.

A dedicated scratchpad location is used for temporary address storage

(DLOCT), The area over which the summing is done is variable, but it is

assumed that no horizontal row has over 31 ones and that the total

number of ones is less than 256, The result is left in MIR.

www.manaraa.com

Figure 6, Flowchart for summing all ones in a specified rectangular

area

www.manaraa.com

75

COUNT

IBLOC -»NARI
MARI -» DLOCT
HR D5
VR D2

bLEAR
n.AJi

I, MIR

n—ADD 1
52-̂ AI» 2

C ̂— ̂ EBl
MIR-̂ DB2
ADDO DB3

VLOOP

f

D5
MASK-»

m
CM

Ca.CB»®C.CI).

C
U 1'

H LOOP

I
isxr

 ̂L
BYTE

COUNT L

D1 = D1 - 1

FIX

DLOCT+1 MARl

MA&lH» DLOCT

RETURN

www.manaraa.com

76

Table 3. Symbolic program for summing all ones in a specified

rectangular area

Symbolic Symbolic

Label operation parameters Comments

COUNT R2 2, MARl, MAR3 obtain initial byte location

WDL MA.R1, DLOCT store it in a temporary

location

R1 1, D5, MAR3 put horizontal range in D5

R1 1, D2, MAR3 put vertical range in D2

SI 0 clear I

CLEAR MIR

SCI 0 set carry in to 0

BAS 0, IB2; 0, DEI setup adder inputs

RBS C^; MIR; ADDO setup data buses

VLOOP MOVE D5, D1 copy horizontal range in D1

R1 1, CM, MAR3 mask to CZi

CLEAR ^A' '"C S clear counters

HLOOP R1 8, L, MARl byte to L

SCLM ; 10 count ones

JNZDl HLOOP

SUM BST ;; MIR adder output to MIR

ITI 0

JUC SUM

JNZD2 FIX check for more processing

SR return to main program

www.manaraa.com

77

Table 3 (Continued)

Label

Symbolic

operation

Symbolic

parameters Comments

FIX RDL MARl, DLOCT three commands to prepare for

next pass

R1 1, NUL, MARI

WDL MARI, DLOCT

JUC VLOOP

Line Thinning and Stray Bit Deletion

The flowchart for this subroutine is given in Figure 7, and the

symbolic program is given in Table 4. The purpose of the subroutine is

to reduce the thickness of lines in a character array. It does this

by performing a thresholding operation. Consider a given bit in the

unprocessed array and its eight nearest neighbors. These nine bits are

to be considered in determining the corresponding bit in the processed

array. If seven or more of these nine bits are ones then make the

processed bit a one. Otherwise the processed bit is to be made a zero.

The initial assumptions are that the array dimensions are parameters

in the control memory, and that the beginning byte locations of the

unprocessed array and the processed array are stored in two dedicated

locations in the scratchpad (DLOCl, DL0C2). At the end the processed

array and the unprocessed array are both stored in the scratchpad.

www.manaraa.com

Figure 7. Flowchart for a line thinning operation

www.manaraa.com

79

LINE THIN

RCWS— ̂ D2
COLS-̂ DLOCT

DLOCl -MARl

DL0C2 -̂ MAR2

1

M — ̂DBl
R—«• 082
Cg-̂ IS3

OLOOP

I
3

CLEAR L
FIRST M
BYTE

M

DIOCT D1

FIX

VUHJHIVHARI
DL0C2+l-*aABa
MAR1-» DLOCl
MAR2-+.DL0C2

ILOOP

~T~

CLEAR C
NEXT

•R BYTE

COUNT
NEIGHBORS

C ̂ « C ̂ + 1
for

i » 0,1,"'"7

DB3̂ NBW BVTK
Cffll-̂ L
DB2-M

D1 » D1

D2 = D2 - 1

www.manaraa.com

80

Table 4, Symbolic program for a line thinning operation

Symbolic Symbolic

Label operation parameters Comments

LINE THIN MAI ROWS, COLS parameters to MARl

WDL MARl, DLOCT store temporarily

RDL D2, DLOCT put rows in D2

RDL MARl, DLOCl location of first byte of

unprocessed array

RDL MAR2, DL0C2 location of first byte of

processed array

RBS M, R, Cg setup data buses

OLOOP CLEAR L

R1 8, M, MARl first byte to M

RDLB D1, DLOCT columns to D1

ILOOP CLEAR C^, C^, Cg, C^, C^

R1 8, R, MARl next byte to R

ses L, M, R+; L, M, R three commands to count neighbors

ses ; L, M, R

ses L, M, Rt; L, M, R

SCL ; 11 increment counters by one

W1 8, DB3, MAR2 store processed character

BRT L, M

JNZDl ILOOP

JNZD2 FIX

SR return to main program

www.manaraa.com

81

Table 4 (Continued)

Symbolic Symbolic

Label operation parameters Comments

FIX RDL MARl, DLOCl the next several commands set

MAR'S for new row

R1 1, NUL, MARI

WDL MARI, DLOCl

RDL MAR2, DL0C2

R1 1, NUL, MAR2

VBL MAR2, DL0C2

JUG OLOOP

Multiple Byte Addition

This subroutine can be used to compute the sum of two positive,

multiple byte operands. The flowchart is given in Figure 8, and the

symbolic program is given as Table 5.

The assumptions used in writing the program are that the

beginning locations (ALOCl, BLOCl) of the two operands, A and B, are

given as parameters in the first two subroutine commands, the sum, S, is

placed in the locations formerly occupied by A, the length of the operands

in bytes is given as a parameter in the subroutine and that the operands

are stored with the least significant bytes first.

www.manaraa.com

Figure 8. Flowchart for the addition of two positive multiple byte

numbers

www.manaraa.com

83

ADD

I
ALOCl-̂ MARl
BL0C1-̂ MAR2
MAR1-* •MAR 3

1

CLEAR I
O^CARRY IN

I
L-̂ DBl

AEDO — DB3

1 1

DBl-̂ ADDl
DB2»ADD2

1 f)|f

LOOP

ACD-L

0«FL0W
ON DB3?

DB3-»S(I)

1
NO

G^GAHRY IN

! ! f U

www.manaraa.com

84

Table 5. Symbolic program for the addition of two positive multiple

byte numbers

Label

Symbolic

operation

Symbolic

parameters Comments

ADD MAI ALOCl operand A location to MARl

MA2 BLOCl operand B location to MAR2

MOVE MAR3, MARl operand C location to MAR3

SI 0 clear the I register

SCI 0 set carry in zero

RBS L; M; ADDO setup data^buses

BAS 0, DBl; 0, DB2 setup adder inputs

LOOP R1 1, L. MARl get i^^ byte of operand A

R1 1, M, MAR2 get i^^ byte of operand B

W1 1, DB3, MAR3 store i^^ byte of operand

J0V3 CARRY test to determine carry into

next byte

SCI 0 carry in is zero

TEST ITI IMAX is addition complete?

JUC - LOOP not complete

SR return to program

CARRY SCI 1 carry in is one

JUC TEST back to see if addition is
pomnlete

www.manaraa.com

85

Single Byte Multiplication

The flowchart for this subroutine is given in Figure 9, and the

symbolic program is presented in Table 6. The subroutine can be used to

compute the two-byte pro-^uct, P, of two single byte operands, A and B.

It is assumed that A and B are located in successive byte locations

of the scratchpad with A in the location called ALOC. ALOC is considered

to be a parameter in the first subroutine command. The product P is

placed in the two byte locations that originally held A and B.

Table 6. Symbolic program for muliplying two single byte men±>ers

Symbolic Symbolic

Label operation parameters Comments

MULT MAI ALOC operand A location to MARl

MOVE MAR2, MARl operand C location to MAR2

CLEAR L, M

SI 0 clear I

RBS L; MIR; R setup buses

SCI 0 set carry in to zero

BAS 0, Iffil; 0, DB2 setup adder inputs

R1 1, R, MARl operand A to R register

BRT ; ; MIR move A to MIR

R1 1, R, MARl operand B to R register

JLS3 SUM

www.manaraa.com

86

Table 6 (Continued)

SjTsbo 1 ic Symbo 1 ic

Label operation parameters Comments

SHIFT SNC

ITI

JUC

SNC

SNC

BBS

BRT

V2

RETURN SR

SUM SBS

BRT

RBS

JUC

L, M, R+;

00, 11, 10

0

GO

M+; , 10,

M+; , 10,

; M ; L

; ; MIR

, MIRDB3

; ; ADDO

; ; L

; ; R

SHIFT

shift partial product and multiplier

complete?

not complete

shift M down

shift M down

setup buses

first byte of P in MIR

store P

return to main program

next three commands to perform

the summation

www.manaraa.com

Figure 9. Flowchart for single byte multiplication

www.manaraa.com

88

MOLT

ALOC+'MARl
MAR1-̂ MAR2

CLEAR L,M,I

L-»»E»1
MIR+.DB2
R-»DB3

O^CARRY IN
DB1-»ADD1
DB2-̂ ADD2

i
A ̂ R

1
DR3*MIR

' 1
B-« -R

SHIFT DOWN
LM, R
I « I + 1

ADD0-»>IB3

D53-̂ L

R-^I»3

SHIFT M DOWN
TWO PLACES

M-̂ DB2

BB2 -»-MIR

BBTCBH

	1968
	Structure and organization of a pattern processor for handprinted character recognition
	Roy James Zingg
	Recommended Citation

	tmp.1411775251.pdf._efyj

